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Abstract

The Hawaiian Archipelago experienced a moderate bleaching event in 2019—the third

major bleaching event over a 6-year period to impact the islands. In response, the Hawai‘i

Coral Bleaching Collaborative (HCBC) conducted 2,177 coral bleaching surveys across the

Hawaiian Archipelago. The HCBC was established to coordinate bleaching monitoring

efforts across the state between academic institutions, non-governmental organizations,

and governmental agencies to facilitate data sharing and provide management recommen-

dations. In 2019, the goals of this unique partnership were to: 1) assess the spatial and tem-

poral patterns of thermal stress; 2) examine taxa-level patterns in bleaching susceptibility;

3) quantify spatial variation in bleaching extent; 4) compare 2019 patterns to those of prior

bleaching events; 5) identify predictors of bleaching in 2019; and 6) explore site-specific

management strategies to mitigate future bleaching events. Both acute thermal stress and

bleaching in 2019 were less severe overall compared to the last major marine heatwave

events in 2014 and 2015. Bleaching observed was highly site- and taxon-specific, driven by

the susceptibility of remaining coral assemblages whose structure was likely shaped by pre-

vious bleaching and subsequent mortality. A suite of environmental and anthropogenic pre-

dictors was significantly correlated with observed bleaching in 2019. Acute environmental

stressors, such as temperature and surface light, were equally important as previous condi-

tions (e.g. historical thermal stress and historical bleaching) in accounting for variation in
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bleaching during the 2019 event. We found little evidence for acclimation by reefs to thermal

stress in the main Hawaiian Islands. Moreover, our findings illustrate how detrimental effects

of local anthropogenic stressors, such as tourism and urban run-off, may be exacerbated

under high thermal stress. In light of the forecasted increase in severity and frequency of

bleaching events, future mitigation of both local and global stressors is a high priority for the

future of corals in Hawai‘i.

Introduction

Coral bleaching driven by climate-induced marine heatwaves stands as one of the single great-

est threats to coral reefs [1]. As the pace of warming ocean temperatures have risen, so too

have the frequency and severity of mass coral bleaching events around the world [2, 3]. Over a

prolonged period ranging from 4 to 6 weeks, exposure to elevated temperatures 1˚C above the

local average temperature of the warmest month of the year can often trigger bleaching due to

thermal stress [4], thereby breaking down the symbiotic relationship between corals and the

dinoflagellate algae living within their tissues. After disruption of this symbiosis, corals typi-

cally have been exposed to significant oxidative stress [5–7], lack a crucial energy source [8],

and become increasingly vulnerable to disease [9, 10]. Severe bleaching can result in wide-

spread and immediate partial or full mortality of coral colonies [11, 12]. For those corals that

survive, the sub-lethal effects of bleaching may interrupt processes of growth and reproduction

[4, 13, 14]. As coral reefs worldwide face a barrage of threats imposed by a rapidly warming cli-

mate, further understanding of what drives bleaching and how local environmental factors

interplay with heat stress to differentially affect coral communities is critical for predicting the

state of future reefs. Identifying bleaching resistant coral taxa and reef assemblages can inform

local management targets with the goal of supporting coral resilience following repeated

bleaching events.

The extent of bleaching across reefs in response to thermal stress is often variable and can

be a function of local conditions [15]. Site- and region-specific factors including water flow,

weather patterns, irradiance, and community structure [16–20], as well as anthropogenic dis-

turbances due to sedimentation and nutrient enrichment associated with land-based sources

[21, 22], can impact bleaching extent and severity. Coral taxa exhibit marked variability in

bleaching susceptibility. Certain species are able to withstand repeated thermal stress while

others are unable to recover after a single bleaching episode [23–26]. Fast growing, branching

taxa typically bleach rapidly and undergo whole colony mortality, while slower growing, mas-

sive taxa may take longer to bleach and display increased survivorship rates despite remaining

bleached for longer time periods [24]. With continued warming, these hardier and more

slowly growing taxa are hypothesized to replace weedy, fast-growing taxa on future reefs [24,

27]. While bleaching susceptibility is largely dependent on colony morphology, growth rate,

reproduction, and overall life history strategies [28], bleaching response also varies between

coral taxa due to differences in prior thermal stress exposure and acclimatization to particular

thermal regimes [29–31]. Moreover, variation in bleaching susceptibility can also be influ-

enced by the composition and characteristics of symbiotic algae residing within the host [32–

34]. Growing evidence suggests that corals and their algal symbionts are capable of acclimati-

zation and selective adaptation to thermal stress, resulting in greater bleaching resistance

within populations [23, 29, 30, 35, 36].
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Coral bleaching events in the Hawaiian Archipelago have increased in frequency and sever-

ity since 1996 [19, 37–39]. In 2014, the Northwestern Hawaiian Islands (NWHI) experienced

severe thermal stress and high levels of bleaching resulting in loss of coral cover reaching 68%

at some sites [39]. During the 2015 thermal stress event in the main Hawaiian Islands (MHI),

catastrophic bleaching was observed, with up to a 71% loss in coral cover on the west coast of

Hawaiʻi Island [38], relative to pre-bleaching values, and close to 50% in both Kāne‘ohe and

Hanauma Bay on the island of O‘ahu [17, 40, 41]. In the fall of 2019, the MHI experienced

another marine heatwave with some portions of the MHI and NWHI experiencing more than

20 weeks of accumulated thermal stress, resulting in the third major bleaching event recorded

in the Hawaiian Islands within a 6-year period.

The Hawai‘i Coral Bleaching Collaborative (HCBC) was established following the 2014

bleaching event and includes academic, non-governmental and governmental partners active

in research, restoration, conservation, and management of coral reef resources in Hawai‘i. The

primary mission of the HCBC is to coordinate coral bleaching surveys across the state to moni-

tor the extent and severity of mass bleaching events, collate and share data about these events

to understand their impact, and develop management recommendations for reducing impacts

of future events. To document the 2019 bleaching event, HCBC launched a large multi-institu-

tional response consisting of diver visual assessments and image-based surveys across the

Hawaiian Archipelago. The goals of this study were to: 1) assess the spatial and temporal pat-

terns of thermal stress; 2) examine taxa-level patterns in bleaching susceptibility; 3) quantify

spatial variation in bleaching extent; 4) compare 2019 patterns to those recorded during the

2014 and 2015 bleaching events; 5) determine key natural and anthropogenic predictors (here-

after referred to as drivers) of bleaching in 2019; and 6) explore site-specific management strat-

egies to mitigate future bleaching events using a scenario-based sensitivity analysis.

Methods and materials

Coral bleaching surveys

A total of 46 surveys were conducted across four of the NWHI (Kure Atoll [Hōlanikū], Pearl

and Hermes Atoll [Manawai], Lisianski Island [Kapou], French Frigate Shoals [Lalo]) from 27

August to 4 September 2019 (S1 Fig). A total of 2,131 surveys were conducted at six of the

MHI (Kaua‘i, Oʻahu, Moloka‘i, Maui, Lānaʻi, and Hawaiʻi Island) from 20 August to 7 Decem-

ber 2019 (S1 Table, S2 Fig). Surveys in the NWHI were opportunistically conducted during a

scheduled National Oceanic and Atmospheric Administration (NOAA) National Coral Reef

Monitoring Program (NCRMP) field mission, which preceded the peak of thermal stress from

late September through October.

Surveys were conducted across three depth bins (shallow [0–6 m], mid [>6–18 m], and

deep [>18–30 m]) per island. Survey locations were also selected based on a range of predicted

thermal stress, status as long-term monitoring sites, and accessibility. Across the institutions

that participated in coral bleaching surveys, three different yet complementary survey

approaches [42] were employed that provided similar ecological outputs: in situ diver rapid

visual surveys, photoquadrat surveys, and transect-intercept surveys (see S2 Table and [43] for

detailed methods and data access). Photoquadrat images were analyzed using the computer-

based software PhotoGrid 1.0 or web-based software CoralNet [44]. The following data were

recorded or calculated by each survey approach: total live coral cover (%) and percent of the

total coral cover that was bleached (hereafter referred to as percent bleached), and the absolute

percent cover and percent of the taxa cover that was bleached for up to eight of the most domi-

nant coral taxa per site.
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The relative taxonomic bleaching susceptibility was also calculated per survey when possi-

ble. All taxa were assigned a score from (1) least susceptible to (5) most susceptible to bleaching

using a combination of taxon-specific percent bleached values and bleaching severity in 2019,

scores developed in previous analyses [39], and unpublished data from NOAA Pacific Islands

Fisheries Science Center’s Ecosystem Sciences Division. The relative taxonomic bleaching sus-

ceptibility (BS) was calculated for each surveyed site by the following equation:

BS ¼ ð
XTs

t¼1

Pst StÞ=Ps

where t is taxon, Ts is the total number of taxa for a given survey s, Pst is the percent cover of a

given taxon for a given survey, St is the susceptibility score of a given taxon (S3 Table) and Ps is

the percent cover of all live coral at a given survey.

To assess temporal trends, historical data on bleaching prevalence collected during 2014

(NWHI surveys) and 2015 (MHI surveys) were used (see [39, 45] for details).

Statistical analysis

All data were analyzed using R Statistical Software 3.6.3 [46]. Code base is well developed and

available upon request to the corresponding author. To assess variation in thermal stress over

time, NOAA Coral Reef Watch (CRW) daily 5-km sea surface temperature (SST) and Degree

Heating Week (DHW) (a metric of thermal stress accumulation used to predict bleaching) ver-

sion 3.1 satellite data were used [47, 48]. CRW calculates DHW (˚C-weeks) as the accumula-

tion of instantaneous bleaching heat stress, or HotSpots, during the most recent 12-week

period [49]. HotSpots are defined as positive SST anomalies above the Maximum of the

Monthly Mean SST climatology (MMM), or upper tolerance threshold for corals. Overall,

when the DHW value reaches 4˚C-weeks, significant coral bleaching typically occurs; at 8

DHW and higher, severe and widespread bleaching and mortality is predicted. Data were

extracted from a 6-km buffer surrounding the shoreline of each island/atoll that was surveyed

in 2019, and daily mean estimates were derived and used to generate time-series per island/

atoll to visually assess long-term changes in temperature and DHW from 1985 to 2019.

Taxa-level percent bleaching data in 2019 were only collected at four of the MHI (O‘ahu,

Lānaʻi, Maui, and Hawaiʻi Island) and unevenly across depth strata (S4 Table). Non-metric

multidimensional scaling (nMDS) was conducted using square-root transformed Bray-Curtis

dissimilarity matrices of relative live coral cover to visualize community level differences in

percent bleached and taxonomic susceptibility between islands (‘metaMDS’ function, vegan
package [50]. A single site dominated by Porites monticulosa was removed because it strongly

skewed community composition. To determine how the bleaching response differed between

dominant coral taxa, data for species observed on less than six surveys per island were removed

prior to generating visual representations of mean percent bleaching per taxa. Following Fen-

ner 2005 [51], Porites lutea was considered a synonym of Porites evermanni; therefore, all

observations of P. evermanni were considered to be P. lutea.

To assess spatial and temporal patterns as well as investigate potential drivers of bleaching,

we first addressed spatial auto-correlation (i.e. the possibility that near-by sites share similar

patterns in bleaching) among surveys by performing hierarchical clustering. Surveys within 1

km of one another, irrespective of depth, were assigned distinct cluster identifications [52]; the

number of surveys in these resulting clusters ranged from 1 to 81. Within each of these clus-

ters, surveys conducted in each depth bin (shallow, mid, or deep) were further combined to

calculate a single mean value of percent bleached per depth bin (S5–S7 Tables). Given the large

island size, clusters in the MHI were assigned to sub-island zones (e.g. North, South, West,
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etc.) to test for intra-island variability in bleaching (see [45] for details and data access). Zone

boundaries were chosen using a combination of personal observations and sectors identified

to be spatially homogeneous based on long-term benthic cover data [53]. If there were less

than three mean estimates of % bleached in a depth bin across all replicate clusters within a

given zone, then that depth bin was dropped from that zone altogether in subsequent analyses.

To account for the variability in surveys within a cluster, a weighting factor was assigned to

each cluster according to the amount of information and variation each cluster provided to the

overall inference. Weighting factors were calculated as the inverse of the standard error of

mean percent bleaching. They were then transformed and scaled prior to analysis by the fol-

lowing process: weighting factors greater than the 95th percentile were set to the 95th percen-

tile value, all weighting factors were then divided by the 95th percentile to result in an overall

range of weights from > 0 to 1, and weighting factors that were NA (due to n = 1 within the

depth bin/cluster) were set to the 5th percentile. All spatial, temporal, and driver analyses used

weighting factors to account for the variability in sample sizes per cluster.

The response variable (percent bleached) was square-root transformed to meet visual

assumptions of normality for the spatial, temporal, and drivers analyses. Spatial differences in

% bleached in 2019 were compared across the Hawaiian Archipelago at the finest scale possible

(zone in the MHI; island/atoll in the NWHI) using a weighted one-way ANOVA followed by

Tukey’s post hoc tests. Data were only included in the temporal analysis for depth bins and

zones (MHI) or islands (NWHI) that were visited in both 2014 (NWHI only) or 2015 (MHI

only) and 2019. The 2014 and 2015 data sets were clustered and weighted following the same

approach described above for consistency with the 2019 data set and to account for spatial

autocorrelation. Temporal differences in % bleached between 2015 and 2019 in the MHI were

assessed using a weighted linear mixed model (LMM) approach. Likelihood ratio tests (LRT),

following tests for normality and equal variances, were used to determine the significance of

year, zone, and their interaction, with island as a random effect. If zone was significant, Tukey

post hoc analyses were used to determine which zones in the MHI were significantly different

between years. Differences in % bleached between 2014 and 2019 in the NWHI were examined

using a weighted two-way ANOVA with fixed effects of year, island, and their interaction.

Potential natural and anthropogenic drivers of the 2019 bleaching event were investigated

using a weighted linear model approach that assessed a number of hypothesized mechanisms

associated with bleaching (S8 Table). Interaction terms were also included to examine how

each potential driver modified the relationship between acute thermal stress and bleaching,

and taxonomic susceptibility and bleaching. Observations of bleaching from deep (> 18 m)

sites were excluded from this analysis based on poor sampling distribution across this depth

range. Surface light (PAR) and light attenuation (kdPAR) raster data derived from satellite

imagery was masked at the pixel-level as a quality control measure. We overlaid the ocean

color rasters with bathymetry data. Pixels that had an area greater than 5% registered in depths

of 30 m or shallower were masked. We then derived the ocean color values (PAR and kdPAR)

from an extraction of the nearest pixel. Clusters were removed from the analysis if NA values

for any predictor variables were detected. Each predictor was transformed as needed to

improve normality (S9 Table) and then standardized and centered prior to analysis. Backwards

step-wise model selection was performed using Bayesian information criterion (BIC) with the

stepAIC function from the R package ‘MASS’ [54] to identify the best-fit model, with square-

root transformed percent bleaching in 2019 as the response variable. Partial regression plots

were generated to visualize the effects of each driver variable on predicted bleaching while

accounting for the effects of all other drivers. Interaction terms were visualized using predic-

tion interaction surface plots, where predicted bleaching was calculated holding all variables

constant at their means except for the two interacting variables of interest, which were varied
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over their observed ranges. To further understand the impact of each driver variable on pre-

dicted bleaching, we perturbed the model by increasing and decreasing each driver in turn by

one standard deviation (SD) while holding all other drivers constant at their mean. Mean pre-

dicted bleaching per variable perturbation was calculated and compared.

To investigate potential management actions that may mitigate future bleaching events in

the main Hawaiian Islands, we used scenario-based modelling to simulate a heating event by

holding acute thermal stress constant at the 95th percentile observed during the 2019 event

(10.5 DHW). Using the best-fit model, we perturbed a subset of drivers (that could potentially

be manipulated by managers and including surface light [PAR], sewage effluent, urban run-

off, taxonomic susceptibility, and tourism) in turn by reducing each variable by one SD and

then generating bleaching predictions at the depth bin per cluster level. To identify what man-

agement action would be most effective at reducing bleaching, we calculated the difference

between the predicted bleaching under these conditions to the original model predictions.

Results

Temporal and geographic trends in long-term thermal stress

In the Northwestern Hawaiian Islands, Kure, Pearl and Hermes Atoll (PHR), and French Frig-

ate Shoals (FFS) all experienced higher DHW in 2019 than in 2014, with DHW surpassing

12˚C-weeks (Fig 1a). In contrast, thermal stress at Lisianski was far lower in 2019 (6.9˚C-

weeks) than in 2014 (18.4˚C-weeks) and remained below the bleaching threshold unlike in

2014. The SSTs at Kure and PHR tracked above the bleaching threshold, reaching higher tem-

peratures sooner and for a longer duration in 2019 than in 2014. SST at FFS also reached the

MMM sooner in 2019 than in 2014, yet plateaued near the bleaching threshold.

Each of the main Hawaiian Islands experienced a longer duration and higher intensity of

thermal stress during the 2015 bleaching event than during the 2019 bleaching event (Fig 1b).

The maximum DHW experienced per island was 1.1–8.2 times higher in 2015 compared to

the 2019. In late spring of 2019, SSTs across the MHI began to track well above historical rec-

ords. The SST in 2019 plateaued at or close to the bleaching threshold, defined as 1ºC above

the MMM climatology (a measurement of the upper limit for typical temperatures), while in

2015 it surpassed the bleaching threshold in the MHI. Peak thermal stress occurred within

October in both years. O‘ahu experienced the lowest DHW of all the MHIs in both bleaching

event years, with a maximum of 4.5 and 0.5˚C-weeks in 2015 and 2019, respectively. Hawai‘i

Island had the greatest difference in DHW between years, dropping from 9.3˚C-weeks in 2015

(the highest across all MHI that year) to 4.3˚C-weeks in 2019.

Variability in coral community assemblages and bleaching response across

islands

The coral community structure in 2019 in the MHI appeared to follow a longitudinal shift,

with Maui and Lānaʻi having more similar communities, while communities diverged the

most between Hawai‘i Island and O‘ahu (Fig 2). The percent bleached and the relative suscep-

tibility of corals to bleaching also appeared to vary most between Hawai‘i Island and O‘ahu,

with greater levels of bleaching and more susceptible coral taxa observed on O‘ahu despite low

total coral cover there (absolute individual species-level cover all fell below 7.5%, Fig 3).

The taxa with the highest percent of bleaching across all islands combined was Porites duer-
deni (mean = 96.3 ± 2.63%), which was only observed on Maui (Fig 3). No bleaching was

observed in Porites rus, and Pavona varians had the lowest observable bleaching extent

amongst all species (mean = 7.35 ± 2.13%). Of all genera observed, Pocillopora spp. were the

PLOS ONE Coral bleaching across the Hawaiian Archipelago in 2019

PLOS ONE | https://doi.org/10.1371/journal.pone.0269068 September 1, 2022 6 / 24

https://doi.org/10.1371/journal.pone.0269068


most vulnerable to bleaching, with an island-scale mean extent of 53.10 ± 2.92%), while overall

Porites spp. were the least susceptible across all genera observed (mean = 13.74 ± 0.85%) and

tended to have higher absolute cover than other genera island-wide. Trends in species-level

bleaching held across space for certain taxa (e.g. Pocillopora meandrina exhibited >50%

bleached among all islands), but varied across islands for others (e.g. Porites lutea and Monti-
pora flabellata; Fig 3). On Lānaʻi, a high extent of bleaching was observed in Pocillopora mean-
drina, a species with low absolute coral cover, while only moderate bleaching was observed in

M. capitata, a species with comparatively high absolute cover. More species were observed at

Hawai‘i Island than any other island and these taxa exhibited a range of bleaching responses,

although the species with the highest extents of bleaching had the lowest absolute cover (P.

meandrina and Pavona duerdeni). Very high bleaching (> 75%) was observed in three species

(M. capitata, Porites duerdeni, Pavona duerdeni) on Maui, which had similar magnitudes of

response on other islands, although not as severe.

Fig 1. Sea surface temperature (SST) (top of panel) and NOAA Coral Reef Watch’s Degree Heating Weeks (DHW) data (bottom of panel) for the

(a) Northwestern Hawaiian Islands (French Frigate Shoals, Kure Atoll, Lisianski Island, and Pearl and Hermes Atoll) and (b) Main Hawaiian

Islands (Kaua‘i, O‘ahu, Moloka‘i, Maui, Lānaʻi, and Hawai‘i Island). Solid horizontal red line: the maximum of monthly mean SST climatology

(MMM); dashed horizontal red line: bleaching threshold SST (1ºC above MMM). Yellow, orange and blue lines represent temperature and DHW

trends from 2014, 2015, and 2019, respectively; gray lines represent all other years from 1985–2018.

https://doi.org/10.1371/journal.pone.0269068.g001
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Fig 2. Two-dimensional ordination of the nonmetric multidimensional scaling (NMDS) configuration showing site scores based on Bray-

Curtis dissimilarities of taxa-level relative live coral cover with overlaid percent bleached (a) and taxonomic susceptibility (b) recorded in

2019. Taxa scores are shown in black text (see S3 Table for code definitions). Points are shaped by island (MHI only). Stress score = 0.15. Species

codes: AGEM = Acropora gemmifera, CVAU = Cycloseris vaughani, LPUR = Leptastrea purpurea, LEPT = Leptastrea spp., LINC = Leptoseris
incrustans, MCAP = Montipora capitata, MDIL = Montipora dilatata, MFLA = Montipora flabellata, MINC = Montipora incrassata, MPAT =

Montipora patula, PDUE = Pavona duerdeni, PMAL = Pavona maldivensis, PVAR = Pavona varians, PDAM = Pocillopora damicornis, PGRA =

Pocillopora grandis, PMEA = Pocillopora meandrina, PBRI = Porites brighami, PCOM = Porites compressa, PODU = Porites duerdeni, PLIC =

Porites lichen, PLOB = Porites lobata, PLUT = Porites lutea, PMON = Porites monticulosa, PRUS = Porites rus, POSP = Porites spp., PNIE =

Psammocora nierstraszi.

https://doi.org/10.1371/journal.pone.0269068.g002

Fig 3. Species-level mean (± SE) percent bleached colored by absolute cover for all depths combined at the (a) domain level (MHI) and (b) island

level in 2019. Gaps between bars represent taxa observed on fewer than six surveys per island.

https://doi.org/10.1371/journal.pone.0269068.g003
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Spatial patterns in bleaching in 2019

Bleaching varied significantly between locations across the archipelago (zone in the MHI and

island/atoll in the NWHI; one-way ANOVA; F(22,338) = 10.92; p< 0.001). With low observed

bleaching in east Hawai‘i Island (0.9%), specific significant differences occurred between this

zone and multiple locations throughout both the MHI and NWHI (S3–S5 Figs). At the island

level, Kaua‘i had the lowest percent bleaching observed across the entire archipelago

(5.51 ± 1.66%), although bleaching at the surveyed zones here was not significantly different

from other locations. While Kure and PHR had comparable levels of observed bleaching

(34.7% and 34.4%, respectively), predicted bleaching was highest across the archipelago for

PHR (S3 Fig). Within the NWHI, there was no significant difference in bleaching extent

between islands/atolls, and low sample size precluded meaningful comparisons of bleaching

across space at each island/atoll (S4 Fig). On O‘ahu, higher bleaching levels were recorded on

northern reefs than elsewhere on the island, particularly on the northwest coastline (Fig 4).

Conversely, the north and south zones of Maui experienced significantly less bleaching than

other zones both within Maui and among the archipelago.

Shifts in bleaching response over time

Percent bleached varied significantly between the years 2015 and 2019 in the MHI overall

(LRT: χ2 = 188.77, df = 1, p< 0.001), with a significant year x zone interaction (LRT: χ2 =

304.97, df = 17, p< 0.001) (S10 Table). At each of the MHI zones that were surveyed, the %

bleached was either higher in 2015 or not significantly different than in 2019 (Fig 5, S6 and S7

Figs). Both zones along the leeward coast of Hawai‘i Island showed a significant difference in

percent bleached between years, as did west Maui. O‘ahu had the lowest level of bleaching

across islands in 2015 (29.74% ± 3.37 SE), and bleaching in 2019 was similar (25.76% ± 2.42

SE).

In the NWHI, % bleached varied significantly between islands (Two-way ANOVA; F(1,16) =

4.953; p = 0.041) and between years (F(1,16) = 8.262; p = 0.011). Pairwise post-hoc Tukey tests

revealed no significant difference in bleaching between years at the island level.

Drivers of the 2019 bleaching event

From largest to smallest effect size relative to other predictors, historical bleaching, taxonomic

susceptibility, acute thermal stress, urban run-off, depth, and PAR were positively correlated

with percent bleached in 2019, while sewage effluent and historical thermal stress had a nega-

tive relationship with percent bleached (Table 1, Fig 6, S8 Fig). Acute thermal stress interacted

significantly with historical thermal stress and tourism (Table 1, S7 Table, S8 Fig). Taxonomic

susceptibility interacted significantly with urban run-off, historical bleaching, and depth.

Together, these terms and interactions accounted for 76% of the variation in bleaching (S6

Fig).

When assessing the interaction between acute thermal stress and historical thermal stress,

model predictions suggest that percent bleaching peaks at high levels of both acute and histori-

cal thermal stress, and is lowest under low acute stress coupled with high historical stress (Fig

7). The interaction between acute thermal stress and tourism exhibited similar patterns, with

the highest levels of bleaching predicted under high acute stress and high tourism levels. The

interaction between taxonomic susceptibility and depth, historical bleaching, and urban run-

off exhibited similar overall trends, with high bleaching extent predicted only under conditions

of high taxonomic susceptibility. Even when subjected to high levels of urban run-off, moder-

ate bleaching extent only occurred when susceptibility was above 2.5. In general, predicted

bleaching tended to increase with depth, but this pattern was most evident for susceptibility of
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3 and above. Across the range of historical bleaching observed, predicted levels of bleaching

were similar when susceptibility reached 3.5. With lower susceptibility, predicted bleaching

tended to increase with increased historical bleaching.

When the best-fit model was perturbed by increasing and decreasing each driver variable in

turn by 1 SD (holding all other drivers constant at their mean values), the largest increase in

Fig 4. Predicted (± 95% CI) percent bleached per island (NWHI) and zone (MHI) for all depths combined in 2019. Zones are abbreviated in grey

along the x-axis. Bars not connected by the same letter are significantly different at p< 0.05 based on Tukey post-hoc tests.

https://doi.org/10.1371/journal.pone.0269068.g004

Fig 5. Predicted (± 95% CI) percent bleached per island and zone for all depths combined by year. Zones are abbreviated in grey along the x-axis.

Islands or zones not connected by the same letter across years are significantly different at p< 0.05 based on Tukey post-hoc tests; ‘NS’ denotes non-

significant differences.

https://doi.org/10.1371/journal.pone.0269068.g005
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mean predicted bleaching per driver was due to increasing taxonomic susceptibility, with

bleaching increasing from 15.6% to 26.1% (S9 Fig). This was closely followed by an increase in

acute thermal stress (24.7%) and urban run-off (23.6%). Reducing historical bleaching (%)

resulted in the largest decline in predicted bleaching (15.6% to 7.03%), followed by acute ther-

mal stress (15.6% to 7.29%) and taxonomic susceptibility (15.6% to 8.13%).

Management actions that would best serve to mitigate the effects of future thermal stress

events proved to be highly variable across sites (Fig 8). However, most sites in Maui and Lānaʻi
appeared to benefit from decreasing urban run-off under simulated thermal stress, while on

O‘ahu bleaching would decrease most following a decline in taxonomic susceptibility. In west

Hawai‘i Island, decreasing surface light (PAR) as well as taxonomic susceptibility emerged as

recommended management interventions. No clear patterns between depths emerged.

Discussion

Coral bleaching in 2019 was driven by community composition &

environmental factors

A gradient of bleaching responses was observed across the MHI during the 2019 event, which

contrasted patterns in 2015 when thermal stress was more extreme and more uniform mass

bleaching was observed. This variability in bleaching was found to be largely driven by taxo-

nomic susceptibility, consistent with prior studies illustrating the significant impact that the

distribution of vulnerable taxa has on the outcome of a bleaching event [39, 55, 56]. The 2019

surveys showed that the coral community assemblage on O‘ahu was relatively more susceptible

to bleaching than other islands. On O‘ahu, the most vulnerable taxa may have survived the

2015 event due to the lower thermal stress (0.5˚C-weeks) relative to other islands. While lower

bleaching and thermal stress was observed on Hawai‘i Island in 2019 compared to 2015, it is

important to note that Hawai‘i Island experienced a catastrophic loss of coral cover from the

2015 bleaching event, with mortality recorded in more than half of all stony corals present on

the island’s west coast [38]. The loss of corals likely included taxa more susceptible to bleach-

ing, such as P. meandrina − colonies that averaged 77.6% total post-bleaching mortality

Table 1. Best-fit model for drivers of 2019 bleaching (adjusted R-squared = 0.76).

Variable Estimate SE t-value p-value

Historic % Bleached 1.321 0.158 8.385 < 0.0001

Taxonomic Susceptibility Score 1.297 0.166 7.812 < 0.0001

Acute Thermal Stress 1.22 0.156 7.8 < 0.0001

Urban Run-off 0.853 0.165 5.183 < 0.0001

Depth 0.774 0.116 6.689 < 0.0001

Surface Light 0.52 0.096 5.409 < 0.0001

Sewage Effluent -0.491 0.133 -3.709 < 0.001

Historical Thermal Stress -0.279 0.119 -2.344 < 0.05

Tourism & Recreation -0.138 0.166 -0.83 0.408

Acute Thermal Stress x Historical Thermal Stress 1.49 0.233 6.385 < 0.0001

Acute Thermal Stress x Tourism & Recreation 0.739 0.143 5.182 < 0.0001

Taxonomic Susceptibility Score x Urban Run-off 0.622 0.145 4.288 < 0.0001

Taxonomic Susceptibility Score x Historic % Bleached -0.611 0.159 -3.846 < 0.001

Taxonomic Susceptibility Score x Depth 0.334 0.128 2.618 < 0.01

See S8 Table for driver variable descriptions.

https://doi.org/10.1371/journal.pone.0269068.t001
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following the 2015 event. The resulting communities, therefore, were likely less susceptible

overall and when they were exposed to lower acute thermal stress in 2019, they bleached less.

While massive Porites colonies are considered stress tolerant in other contexts [28], certain

communities on Hawai‘i Island’s west coast suffered significant post-bleaching mortality of P.

lobata and P. evermanni in 2015 (losses of 55.7% and 92.5%, respectively [38]). In 2019, the

bleaching responses of P. lobata and P. lutea were amongst the mildest at each island surveyed.

This shift in bleaching response is likely more related to the lower DHW experienced in 2019

vs. 2015, rather than changes in susceptibility operating at the colony-level. While it is hypoth-

esized that coral populations may adapt and/or acclimate to thermal stress [23, 29, 36], we lack

Fig 6. Partial regression plots. Solid line: Back-transformed predicted percent bleached from best-fit model minus the intercept

of the reduced model (best-fit model when the variable of interest and all interactions are removed) across range of (a) acute

thermal stress (DHW), (b) surface light (PAR), (c) depth (ft), (d) taxonomic susceptibility score, (e) historical thermal stress

(DHW), (f) historic percent bleached (%), (g) sewage effluent, (h) urban run-off, and (i) tourism and recreation. Grey area: upper

and lower 95% confidence intervals. Points are the back-transformed residuals of the reduced fit model. Residuals are sized by

observation weight. See S8 Table for variable descriptions.

https://doi.org/10.1371/journal.pone.0269068.g006
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the region-wide historical bleaching data that would provide robust support for taxa-specific

changes in thermal tolerance.

Regional and site-level bleaching may also be strongly driven by physiological variation of

the host and symbiont. Fluorescent tissue pigment granules (FPG) are known to protect corals

from broad-spectrum solar radiation [57], and fast-growing pocilloporids have been reported

to have lower densities compared to slow-growing massive poritids. In addition, thinner tis-

sues in pocilloporids compared to poritids could make them more vulnerable to thermal stress

[24]. More so, differences in the dominant symbiont genera appear to drive intraspecific vari-

ability in colony-level thermal tolerance [58–60]. For example, the bleaching response of Mon-
tipora capitata in Kāne‘ohe Bay during the 2015 bleaching event was significantly driven by

dominant symbiont genus, with some colonies severely bleaching while others remained unaf-

fected [60]. Beyond local abiotic conditions, differences in symbionts, together with host geno-

typic factors, may explain the observed species-level bleaching variability across islands;

however, further research is warranted.

Fig 7. Prediction interaction surface plots. Gradient denotes predicted percent bleached from best-fit model across ranges of (a) acute thermal stress

(DHW) and historical thermal stress (DHW), (b) acute thermal stress (DHW) and tourism/recreation, (c) susceptibility and depth (ft), (d) susceptibility

and historic percent bleached, and (e) susceptibility and urban run-off. Model predictions were generated per interaction effect by holding all other

variables at their mean value. Points denote observed values of variables. See S8 Table for variable descriptions.

https://doi.org/10.1371/journal.pone.0269068.g007
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Although taxonomic susceptibility was the strongest predictor of the 2019 bleaching, ther-

mal stress was a major driver and often played a strong interactive role with other natural and

anthropogenic factors. These results are consistent with the bleaching response to thermal

stress documented in 2014/2015 [39, 40]. The 2019 response was mediated by both historical

and acute thermal stress. Importantly, reefs were predicted to bleach more if they experienced

both high acute thermal stress and high historical thermal stress, but predicted to bleach less if

Fig 8. Potential site-specific management actions to reduce bleaching under simulated thermal stress using best-fit model. Colors reflect the

variable found to result in the largest decrease in predicted bleaching (%) at the site-level under model perturbations, wherein all variables were in turn

reduced by 1 SD as other variables were held at observed values. Only variables that could feasibly be managed were perturbed (surface light (PAR),

sewage effluent, urban run-off, susceptibility, and tourism/recreation). See S8 Table for driver variable descriptions.

https://doi.org/10.1371/journal.pone.0269068.g008
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they experienced high acute thermal stress and low historical thermal stress. These results sug-

gest that previous exposure to bleaching did not result in significant overall acclimation or

adaptation to thermal stress events at the reef community level. Moreover, the significant

interaction between historical bleaching and susceptibility demonstrated that corals with high

susceptibility to bleaching will bleach regardless of their previous bleaching response. Surpris-

ingly, SST variability did not emerge as a significant driver of bleaching in 2019. This is also

contradictory to findings in other regions, where coral bleaching is significantly less common

in localities with high SST variability [15, 23, 61, 62].

Other environmental drivers of the 2019 bleaching event included surface light (PAR). This

was a positive driver of bleaching during 2019 according to this study and has frequently been

implicated in increasing bleaching during periods of elevated thermal stress by amplifying

photo inhibition [19, 63, 64]. Light attenuation, or turbidity, can also regulate bleaching by

reducing severe irradiance; corals at locations with high turbidity or cloud cover have been

found to bleach less [37, 64, 65]. However, turbidity modeled using satellite-derived kdPAR

measurements in this study did not emerge as a significant mediator of the 2019 bleaching.

The role of depth in bleaching patterns varies considerably across studies. Numerous stud-

ies have found decreased bleaching and bleaching-induced mortality with depth, but this effect

often varies due to complex and interacting local factors such as coral community composi-

tion, temperature, and light attenuation [66, 67]. While Couch et al. [39] found a slight nega-

tive relationship between depth and bleaching during the 2014 bleaching event in the NWHI,

the 2019 bleaching response in the MHI tended to increase with depth. The modeled signifi-

cant interaction between susceptibility and depth predicted that the increase in bleaching at

depth was more pronounced for corals with higher susceptibility. Our findings are in line with

Venegas et al. [68], who found no meaningful depth refuge from thermal stress down to 38 m

in the west and central Pacific Ocean. Also, bleaching thresholds can vary with depth, with

higher sensitivities in deeper waters [62, 69]. Therefore, in the MHI, taxa more susceptible to

bleaching may be found on deeper reefs. Given that the depth gradient in this study did not

surpass 17 m and the relatively high water clarity at depth in the MHI, it is unsurprising that

we found no evidence of depth as a refuge from bleaching.

Anthropogenic stressors exacerbated the 2019 bleaching response

Several anthropogenic stressors were correlated with the 2019 bleaching response. Urban run-

off, which in this study consisted of a proxy for pollutants such as trash, household chemicals,

pharmaceuticals, and oil [70], was a positive driver of the 2019 bleaching; this relationship was

especially detrimental for more susceptible coral taxa. High incidences of coral disease and

mortality have been observed on reefs located near areas of run-off [71]. Many chemicals are

detrimental to coral health, with oil being particularly lethal [72]. The effects of toxic sub-

stances may be enhanced at higher temperatures [73]; during a bleaching event, the rapid deg-

radation of pollutants likely amplifies the negative effects of thermal stress on corals.

Tourism and recreation alone did not significantly predict bleaching, but the significant

interaction between tourism/recreation and acute thermal stress suggests that the effects of

increased tourism/recreation are exacerbated under periods of high thermal stress. In other

words, reefs that are exposed to tourism and recreation may bleach more than undisturbed

reefs during a bleaching event. The negative impacts of heavy tourism on coral reefs have

resulted in higher incidences of damage and disease coupled with lower coral cover observed

globally [74, 75].

Sewage effluent was negatively correlated with bleaching. However, the input of sewage

into coral reef systems has been historically implicated in elevated levels of disease and
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macroalgae cover, as well as reduced coral cover, growth, and recruitment [76–78]. While the

sewage effluent data used in this study is the best available statewide description of nearshore

effluent calculated from estimated total nitrogen and phosphorus flux coming from onsite

sewage disposal systems, this data fails to include effluent coming from injection wells. An

additional caveat to using this effluent data is that the temporal resolution of the data layer

notably predates the 2019 bleaching surveys and thus does not include any additional develop-

ment nor updates to household cesspools following the generation of this data. Yet the negative

relationship between bleaching and effluent as suggested by our best-fit model may support an

alternative view of ecosystem resilience described by Côté and Darling [79] in which a

degraded ecosystem state increases the abundance of disturbance-tolerant species within a

community and boosts the ability of the ecosystem to resist impacts of that disturbance. In this

case, we hypothesize that coral communities that persisted in 2019 were able to tolerate high

levels of sewage effluent coupled with high thermal stress during the 2015 bleaching event—a

sign of positive co-tolerance [80].

Potential management strategies to mitigate impacts of future thermal

stress events

In light of the forecasted increase in bleaching events [81], generating adaptive strategies to

mitigate the impacts of these future stress events is essential for coral reef conservation and

management. When we simulated a high thermal stress event and perturbed a subset of drivers

(that could potentially be manipulated by managers), the impact on predicted bleaching varied

substantially across space. This suggests that the effectiveness of these actions may be highly

site-specific, which should be interpreted in the context of the operability of these management

practices being highly variable across spatial scales [82].

In Maui and Lānaʻi, reducing urban run-off (modelled by calculating area of impervious

surface per watershed as a proxy for trash, household chemicals, oil, etc.) appears to have the

greatest positive impact on reefs, particularly along the west Maui coastline. The west Maui

shoreline is densely populated with resorts, commercial development, and golf courses, with

known land-based sources of pollution (LBSP). Long-term monitoring of coral reefs along this

coastline has revealed a decline up to 50% in certain impacted areas [83]. The reef off Kahekili

Beach Park has been particularly affected by LBSP, with multiple studies linking the loss of

coral cover and high proliferation of macro and turf algae to a prevailing nutrient imbalance

caused by an influx of nutrient-rich wastewater and chemical toxins from the nearby Lāhainā
Wastewater Reclamation Facility [84, 85].

On O‘ahu, our scenarios suggest that a shift to communities composed of less susceptible

coral taxa would play a role in the outcomes of future thermal stress events. Managers should

be cognizant of how the dominance of stress-tolerant taxa will effect future restoration efforts,

and select coral taxa accordingly. However, a narrow focus on bleaching resistance as a pri-

mary target for restoration may lead to less diverse reefs if only a subset of resilient taxa are

selected. Data from 2019 surveys point to those taxa that appear less susceptible to bleaching;

however, it is important to note that the susceptibility of taxa can change over time. Previous

studies have demonstrated that under annual bleaching, the susceptibility of certain taxa can

reverse by “turning previous ‘winners’ into ‘losers’” [31]. As bleaching events in the Hawaiian

Archipelago increase in frequency, we may witness further shifts in taxonomic susceptibility

and community assemblages thereafter.

Along west Hawai’i Island, decreasing surface light (PAR) was the most beneficial manage-

ment action for reducing predicted bleaching at the majority of sites. Shading has been shown

to be a direct and effective means of protection against harmful solar radiation for corals [86,
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87]. West and Salm [88] recommended that managers consider this proactive measure in

response to future forecasted thermal stress events to mitigate bleaching; however, effectively

scaling this effort up to the reef-scale is not yet possible, so these results may have limited appli-

cability for meaningful management of future reef-scale resilience.

Rising frequency of bleaching events and changing trends through time

While ocean temperature trends have indicated an increase in warming over time [3, 89], the

2019 heating event resulted in lower accumulated thermal stress than initially anticipated in

the MHI. Thermal stress experienced across the main Hawaiian Islands during the 2019

bleaching event was more moderate than that endured by reefs during the catastrophic 2014/

2015 event, and bleaching was either similar or significantly reduced in 2019 compared to

2015. Regardless, marine heatwaves are becoming more frequent and severe across the Hawai-

ian Archipelago since the first reported bleaching in 1996 (Fig 1, [39]). In the NWHI, the level

of thermal stress sustained in 2019 was higher or similar to conditions during previous years,

consistent with the warming trend found by Couch et al. [39] and indicating that repeated

thermal stress may start extending across more than just the northern atolls. While NWHI cor-

als continue to bleach during these heatwaves, the lower observed bleaching despite higher

thermal stress experienced in the northern atolls (PHR and Midway) may be a sign of acclima-

tion in resilient taxa or due to the elimination of vulnerable individuals that did not survive

bleaching events prior to 2019 (this study, [39]).

Conclusions

The 2019 bleaching event had widespread effects on coral reefs across the Hawaiian Archipel-

ago and underscored the rising frequency of thermal stress events not only in the central

Pacific, but also around the world. Following the third mass global bleaching event (2014–

2017), which resulted in severe mortality, bleaching events have continued to affect reefs glob-

ally over the past 5 years including regions such as French Polynesia [90], Bonaire [91], and

the Great Barrier Reef [92]. While the 2019 bleaching event in the Hawaiian Islands was not as

severe as initially forecasted, future marine heatwaves still harbor the potential for catastrophic

impacts. This study highlights the value of large, multi-institutional partnerships to study pat-

terns and processes at spatial scales beyond the scope of any one agency. While the bleaching

response was less severe overall across the archipelago in 2019 than in 2014/2015, it was highly

variable among sites and taxa—driven largely by the taxonomic susceptibility of the coral

assemblages present. Whether the coral communities archipelago-wide exhibited signs of

acclimatization to thermal stress is challenging to elucidate, given that potential resilience

observed at certain reefs may be directly caused by the massive mortality that followed the

2014/2015 bleaching event and left only the least susceptible taxa present. Further studies

should examine changes in coral cover and community composition over time, with an

emphasis on collecting taxa-specific size-structure, bleaching and mortality data across a full

depth gradient. In light of the forecasted increase in severity and frequency of bleaching events,

this work lays important groundwork for predicting the effects of bleaching across space and

taxa, and suggests viable management strategies in Hawai‘i for further consideration.
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S3 Fig. Box plots of cluster-level observed percent bleached per island (NWHI) or zone

(MHI). Points are sized by weights assigned per cluster. Zones are abbreviated in grey along

the x-axis.

(DOCX)

S4 Fig. Mean percent bleached per cluster across the Northwestern Hawaiian Islands in

2019. Points represent individual clusters, with shape indicating depth bin. Source: Esri, Earth-

star Geographics (TerraColor NextGen) imagery.

(DOCX)

S5 Fig. Mean percent bleached per cluster across the main Hawaiian Islands in 2019. Points

represent individual clusters, with shape indicating depth bin. Zones are denoted by white

polygons.

(DOCX)

S6 Fig. Box plots of cluster-level percent bleached (%) per island during the 2014 (NWHI)

or 2015 (MHI) bleaching event and the 2019 bleaching event (both regions). Points are

sized by weights assigned per cluster.

(DOCX)

S7 Fig. Box plots of cluster-level percent bleached per zone in the MHI during the 2015

and 2019 bleaching events. Points are sized by weights assigned per cluster.

(DOCX)

S8 Fig. Parameter estimates of best-fit model (± SE). See S8 Table for variable descriptions.

(DOCX)

S9 Fig. Model perturbation plots. Points represent the mean predicted bleaching (%) deter-

mined per model perturbation, when each variable was increased/decreased by 1 SD, with all

other variables held at original observed values. Error bars represent standard error of the

mean. Black line denotes mean of predicted % bleached by unperturbed model. See S8 Table

for variable descriptions.

(DOCX)
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